Wastewater-Based Epidemiology for SARS-CoV-2 in Northern Italy: A Spatiotemporal Model

Int J Environ Res Public Health. 2024 Jun 6;21(6):741. doi: 10.3390/ijerph21060741.

Abstract

The study investigated the application of Wastewater-Based Epidemiology (WBE) as a tool for monitoring the SARS-CoV-2 prevalence in a city in northern Italy from October 2021 to May 2023. Based on a previously used deterministic model, this study proposed a variation to account for the population characteristics and virus biodegradation in the sewer network. The model calculated virus loads and corresponding COVID-19 cases over time in different areas of the city and was validated using healthcare data while considering viral mutations, vaccinations, and testing variability. The correlation between the predicted and reported cases was high across the three waves that occurred during the period considered, demonstrating the ability of the model to predict the relevant fluctuations in the number of cases. The population characteristics did not substantially influence the predicted and reported infection rates. Conversely, biodegradation significantly reduced the virus load reaching the wastewater treatment plant, resulting in a 30% reduction in the total virus load produced in the study area. This approach can be applied to compare the virus load values across cities with different population demographics and sewer network structures, improving the comparability of the WBE data for effective surveillance and intervention strategies.

Keywords: COVID-19; SARS-CoV-2; biodegradation; early-warning system; public health; sewer network; spatiotemporal model; wastewater; wastewater-based epidemiology.

MeSH terms

  • COVID-19* / epidemiology
  • COVID-19* / transmission
  • Cities / epidemiology
  • Humans
  • Italy / epidemiology
  • SARS-CoV-2*
  • Spatio-Temporal Analysis
  • Viral Load
  • Wastewater* / virology
  • Wastewater-Based Epidemiological Monitoring

Substances

  • Wastewater

Grants and funding

This research was funded within the EU Project “EC G.A. NO. 060701/2021/864481/SUB/ENV.C2 -Support to the member states to establish national systems, local collection points, and digital infrastructure for monitoring covid 19 and its variants in waste waters”, and the Project “Epidemiologia delle acque reflue: implementazione del sistema di sorveglianza per l’identificazione precoce di agenti patogeni, con particolare riferimento al SARS-CoV2”, promoted by the Italian Ministry of Health (PROGRAMMA CCM 2020).