Indo-Pacific tropical island streams are home to freshwater pipefish (Microphis spp., Syngnathidae). Otoliths were used to uncover life history traits in four species, including a New Caledonian endemic. All four species present the same methodological challenge: their otoliths are small, fragile and mute for growth marks using basic observation tools. Strontium (Sr) is calcium substituent in the mineral lattice, driven by salinity conditions, and thus useful to study diadromous migrations. Synchrotron-based scanning X-ray fluorescence 2D high-resolution mapping allowed us to tackle the global and hyperfine strontium (Sr) distribution. We developed analytical imaging processes to retrieve biological information from otoliths from the data generated via synchrotron analysis. We uncovered plasticity in the life cycle: all species were amphidromous, apart from some freshwater residents from New Caledonia. Understanding life cycle modalities is crucial to categorize species distribution limits and to implement adapted conservation measures, especially when endemic species are at stake. 2D fine-scale images outlined the heterogeneity of Sr distribution: in addition to the trivial Sr incorporation driven by environmental ionic conditions, there is an unusual mosaic arrangement of Sr distribution and we hypothesize that biological control, especially growth during the early life stages, may sometimes overrule stoichiometry. This shows that it is worth studying otolith formation and element integration at imbricated scales, and our methods and results provide a strong basis for future works and prospects in otolith science.
Keywords: diadromous life cycle; environmental transition signature; freshwater pipefish; otoliths; strontium incorporation; synchrotron XRF 2D mapping.