In recent years, there have been frequent jellyfish outbreaks in Chinese coastal waters, significantly impacting the structure, functionality, safety, and economy of nuclear power plant cooling water intake and nearby ecosystems. Therefore, this study focuses on jellyfish outbreaks in Chinese coastal waters, particularly near the Shandong Peninsula. By analyzing jellyfish abundance data, a Generalized Additive Model integrating environmental factors reveals that temperature and salinity greatly influence jellyfish density. The results show variations in jellyfish density among years, with higher densities in coastal areas. The model explains 42.2% of the variance, highlighting the positive correlation between temperature (20-26 °C) and jellyfish density, as well as the impact of salinity (27.5-29‱). Additionally, ocean currents play a significant role in nearshore jellyfish aggregation, with a correlation between ocean currents and site coordinates. This study aims to investigate the relationship between jellyfish blooms and environmental factors. The results obtained from the study provide data support for the prevention and control of blockages in nuclear power plant cooling systems, and provide a data basis for the implementation of monitoring measures in nuclear power plants.
Keywords: cold source blockade; environmental factors; generalized additive model; jellyfish; spatiotemporal distribution.