Carbofuran (CF) is a carbamate class pesticide, widely used in agriculture for pest control in crops. This pesticide has high toxicity in non-target organisms, and its presence in the environment poses a threat to the ecosystem. Research has revealed that this pesticide acts as an inhibitor of acetylcholinesterase (AChE), inducing an accumulation of acetylcholine in the brain. Nonetheless, our understanding of CF impact on the central nervous system remains elusive. Therefore, this study explored how CF influences behavioral and neurochemical outcomes in adult zebrafish. The animals underwent a 96-hour exposure protocol to different concentrations of CF (5, 50, and 500 μg/L) and were subjected to the novel tank (NTT) and social preference tests (SPT). Subsequently, they were euthanized, and their brains were extracted to evaluate neurochemical markers associated with oxidative stress and AChE levels. In the NTT and SPT, CF did not alter the evaluated behavioral parameters. Furthermore, CF did not affect the levels of AChE, non-protein sulfhydryl groups, and thiobarbituric acid reactive species in the zebrafish brain. Nevertheless, further investigation is required to explore the effects of environmental exposure to this compound on non-target organisms.
Keywords: Acetylcholinesterase; Behavior; Carbofuran; Danio rerio; Oxidative stress; Pesticides.
Copyright © 2024 Elsevier Inc. All rights reserved.