Enzyme-activatable drug delivery systems have been developed for cancer diagnosis and therapy. However, targeted intracellular drug delivery is a challenge for precisely tumor imaging and therapy due to the increased stability of copolymer nanoparticles (NPs) is accompanied by a notable decrease in enzyme degradation. Herein, disulfide bond was designed as an enzyme-activatable molecular switch of SS-P(G2)2/DOX NPs. The copolymer NPs consists of polyvinylpyrrolidone (PVP) with disulfide bonds in the center and enzyme-degradable peptide dendrites (Phe-Lys) to form dendritic-linear-dendritic triblock copolymers (TBCs). The amphiphilic TBCs could be split into two identical amphiphilic diblock copolymers (DBCs) by glutathione (GSH) in cancer cells specifically while maintaining the same hydrophilic-lipophilic equilibrium. This structural transformation significantly reduced the stability of copolymer NPs and enhanced sensitivity of DOX release by cathepsin B-activated. Subsequently, the released DOX acted as an indicator of fluorescence imaging and chemotherapy drug for cancer cells. The polymeric NPs achieved excellent drug-loaded stability and prolonged blood circulation in vivo, and realized fluorescence imaging and specific cancer cell killing capabilities by responding to the overexpression of GSH and cathepsin B in tumor cells. Furthermore, the copolymer NPs demonstrated excellent blood compatibility and biosafety. Therefore, a novel strategy based on one tumor marker acting as the switch for another tumor microenvironment responsive drug delivery system could be designed for tumor intracellular imaging and chemotherapy.
Keywords: Antitumor; Disulfide bonds; Drug-loading stability; Enzyme-responsiveness switch; Fluorescence imaging; Target drug delivery.
Copyright © 2024 Elsevier B.V. All rights reserved.