Background and objective: As the presentation of pulmonary nodules increases, the importance of a safe and accurate method of sampling peripheral pulmonary nodules is highlighted. First-generation robotic bronchoscopy has successfully assisted navigation and improved peripheral reach during bronchoscopy. Integrating tool-in-lesion tomosynthesis (TiLT) may further improve yield.
Methods: We performed a first-in-human clinical trial of a new robotic electromagnetic navigation bronchoscopy system with integrated digital tomosynthesis technology (Galaxy System, Noah Medical). Patients with moderate-risk peripheral pulmonary nodules were enrolled in the study. Robotic bronchoscopy was performed using electromagnetic navigation with TiLT-assisted lesion guidance. Non-specific results were followed up until either a clear diagnosis was achieved or repeat radiology at 6 months demonstrated stability.
Results: Eighteen patients (19 nodules) were enrolled. The average lesion size was 20 mm, and the average distance from the pleura was 11.6 mm. The target was successfully reached in 100% of nodules, and the biopsy tool was visualized inside the target lesion in all cases. A confirmed specific diagnosis was achieved in 17 nodules, 13 of which were malignant. In one patient, radiological monitoring confirmed a true non-malignant result. This translates to a yield of 89.5% (strict) to 94.7% (intermediate). Complications included one pneumothorax requiring observation only and another requiring an overnight chest drain. There was one case of severe pneumonia following the procedure.
Conclusion: In this first-in-human study, second-generation robotic bronchoscopy using electromagnetic navigation combined with integrated digital tomosynthesis was feasible with an acceptable safety profile and demonstrated a high diagnostic yield for small peripheral lung nodules.
Keywords: digital tomosynthesis; ii‐RAB; image‐integrated robotic assisted bronchoscopy; lung nodule; navigation bronchoscopy; peripheral pulmonary nodule; robotic bronchoscopy; solitary pulmonary nodule.
© 2024 The Author(s). Respirology published by John Wiley & Sons Australia, Ltd on behalf of Asian Pacific Society of Respirology.