Protein S-acylation is an important lipid modification and plays a series of biological functions. As a classic proteomic method for S-acylated proteome analysis, the acyl-biotin exchange and its derivative methods are known to be very labour-intensive and time-consuming all the time, and will result in significant sample loss. Multiple methanol-chloroform precipitations are involved in order to remove the substances that would interfere with enrichment and identification including detergents, the residual reduction and alkylation reagents. Here, we developed a rapid and convenient method for S-acylation proteomics by combining a dissolvable tube gel and the classic ABE method, a Dissolvable Gel based One-Tube sample Treatment method (DGOTT) method. The protein fixation rate, impact of the gel size on analysis performance and feasibility for analyzing complex samples were evaluated. This method enabled the alkylation and chemical substitution reactions to be conducted in a single EP tube, and convenient removal of interferents through gel washing, which could obviously simplify operations and shorten the sample treatment duration. Finally, we identified a total of 1625 potential S-acylated proteins from 800 μg of mouse brain cerebral cortex proteins. We believe that our method could offer potential for high-throughput analysis of protein S-acylation.