The overexpression of PDIA1 in cancer has spurred the quest for effective inhibitors. However, existing inhibitors often bind to only one active site, limiting their efficacy. In our study, we developed a PROTAC-mimetic probe dPA by combining PACMA31 (PA) analogs with cereblon-directed pomalidomide. Through protein profiling and analysis, we confirmed dPA's specific interaction with PDIA1's active site cysteines. We further synthesized PROTAC variants with a thiophene ring and various linkers to enhance degradation efficiency. Notably, H4, featuring a PEG linker, induced significant PDIA1 degradation and inhibited cancer cell proliferation similarly to PA. The biosafety profile of H4 is comparable to that of PA, highlighting its potential for further development in cancer therapy. Our findings highlight a novel strategy for PDIA1 inhibition via targeted degradation, offering promising prospects in cancer therapeutics. This approach may overcome limitations of conventional inhibitors, presenting new avenues for advancing anti-cancer interventions.
Keywords: Activity based probe profiling; PDIA1; PROTACs; Proteomics; Targeted protein degradation.
Copyright © 2024 Elsevier Inc. All rights reserved.