Transfection with mRNA has been considered superior to that with plasmids since the mRNA can be translated to a protein in the cytosol without entering the nucleus. One disadvantage of using mRNA is its susceptibility to enzymatic biodegradability, and consequently, significant research has occurred to determine nonviral carriers that will sufficiently stabilize this nucleic acid for cellular transport. Histidine-lysine peptides (HK) are one such class of mRNA carriers, which we think serves as a model for other peptides and polymeric carrier systems. When the HK peptide and mRNA are mixed and interact through ionic and nonionic bonds, mRNA polyplexes are formed, which can transfect cells. In contrast to linear HK peptides, branched HK peptides protected and efficiently transfected mRNA into cells. After describing the preparation and biophysical characterization of these polyplexes, we will provide protocols for in vitro and in vivo transfection for these mRNA polyplexes.
Keywords: Histidine; Imidazole; Lipopolyplexes; Liposomes; Lysine; Peptides; Polymers; Polyplexes; mRNA.
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.