Structure-activity relationship of dual inhibitors containing maleimide and imidazole motifs against glutaminyl cyclase and glycogen synthase kinase-3β

Bioorg Med Chem Lett. 2024 Sep 15:110:129851. doi: 10.1016/j.bmcl.2024.129851. Epub 2024 Jun 19.

Abstract

Alzheimer's disease (AD) is a major cause of dementia and one of the most common chronic diseases affecting the aging population. Because AD is considered a public health priority, there is a critical need to discover novel and effective agents for the treatment of this condition. In view of the known contribution of up-regulated glutaminyl cyclase (QC) and glycogen synthase kinase-3β (GSK-3β) to the initiation of AD, we previously evaluated a series of dual inhibitors containing maleimide and imidazole motifs as potential anti-AD agents. Here, we assessed another series of hybrids containing maleimide and imidazole motifs to gain an in-depth understanding of the structure-activity relationship (SAR). Based on the primary screening, the introduction of 5-methyl imidazole at one side of the molecule did not enhance the QC-specific inhibitory activity of these hybrids (2, IC50 = 1.22 μM), although the potency was increased by 2' substitution on the maleimide motif at the other side of the molecule. Interestingly, compounds containing 5-methyl imidazole exhibited stronger GSK-3β-specific inhibitory activity (2, IC50 = 0.0021 μM), and the electron-withdrawing group and 2' and 3' substitution were favorable. Further investigation of substitutions on the maleimide motif in compounds 14-35 revealed that QC-specific inhibition in the presence of piperidine was improved by introduction of a methoxy group (R2). Increasing the linker length and introduction of a methoxy group (R2) also increased the GSK-3β-specific inhibitory potency. These findings were further confirmed by molecular docking analysis of 33 and 24 with QC and GSK-3β. Overall, these hybrids exhibited enhanced inhibitory potency against both QC and GSK-3β, highlighting an important strategy for improving the potency of hybrids as dual-targeting anti-AD agents.

Keywords: Alzheimer’s disease; Dual inhibitor; GSK-3β; Glutaminyl cyclase; Hybrid; Structure-activity-relationship.

MeSH terms

  • Alzheimer Disease / drug therapy
  • Aminoacyltransferases* / antagonists & inhibitors
  • Aminoacyltransferases* / metabolism
  • Dose-Response Relationship, Drug
  • Enzyme Inhibitors / chemical synthesis
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / pharmacology
  • Glycogen Synthase Kinase 3 / antagonists & inhibitors
  • Glycogen Synthase Kinase 3 / metabolism
  • Glycogen Synthase Kinase 3 beta* / antagonists & inhibitors
  • Glycogen Synthase Kinase 3 beta* / metabolism
  • Humans
  • Imidazoles* / chemical synthesis
  • Imidazoles* / chemistry
  • Imidazoles* / pharmacology
  • Maleimides* / chemical synthesis
  • Maleimides* / chemistry
  • Maleimides* / pharmacology
  • Molecular Structure
  • Structure-Activity Relationship

Substances

  • Maleimides
  • glutaminyl-peptide cyclotransferase
  • Imidazoles
  • Glycogen Synthase Kinase 3 beta
  • Aminoacyltransferases
  • maleimide
  • Enzyme Inhibitors
  • imidazole
  • Glycogen Synthase Kinase 3