Endemic fluorosis has gained increasing attention as a public health concern, and the escalating risk of colitis resulting from excessive fluoride intake calls for effective mitigation strategies. This study aimed to investigate the potential mechanisms underlying the alleviation of fluoride-induced colitis by Tea polysaccharides (TPS). Under conditions of excessive fluoride intake, significant changes were observed in the gut microbiota of rats, leading to aggravated colitis. However, the intervention of TPS exerted a notable alleviating effect on colitis symptoms. Antibiotic intervention and fecal microbiota transplantation (FMT) experiments provided evidence that TPS-mediated relief of fluoride-induced colitis is mediated through its effects on the gut microbiota. Furthermore, TPS supplementation was found to modulate the structure of gut microbiota, enhance the relative abundance of Limosilactobacillus vaginalis in the gut microbiota, and promote the expression of short-chain fatty acid (SCFAs) receptors in colonic tissue. Notably, L. vaginalis played a significant role in alleviating fluoride-induced colitis and facilitating the absorption of butyric acid in the rat colon. Subsequent butyric acid intervention experiments confirmed its remarkable alleviating effect on fluoride-induced colitis. Overall, these findings provide a potential preventive strategy for fluoride-induced colitis by TPS intervention, which is mediated by L. vaginalis and butyric acid.
Keywords: Butyric acid; Colitis; Endemic fluorosis; Gut microbiota; Limosilactobacillus vaginalis; Tea polysaccharides.
Copyright © 2024 Elsevier B.V. All rights reserved.