Causal relationships between gut microbiota, gut metabolites, and diabetic neuropathy: A mendelian randomization study

Clin Nutr ESPEN. 2024 Aug:62:128-136. doi: 10.1016/j.clnesp.2024.04.019. Epub 2024 May 23.

Abstract

Background: Previous studies have shown a strong correlation between gut microbiota and diabetes and its associated complications. We aimed to evaluate the causal relationships between the gut microbiota, gut metabolites, and diabetic neuropathy.

Methods: Summary statistics of 211 gut microbiota and 12 gut-related metabolites (β-hydroxybutyric acid, betaine, trimethylamine-N-oxide, carnitine, choline, glutamate, kynurenine, phenylalanine, propionic acid, serotonin, tryptophan, and tyrosine) were obtained from previous genome-wide association studies (GWAS). A two-sample Mendelian randomization (MR) design was used to estimate the effects of gut microbiota and gut metabolites on the risk of diabetic neuropathy based on FinnGen GWAS.

Results: Higher levels of Acidaminococcaceae (OR = 0.62; 95%CI = 0.46 to 0.84; P = 0.002), Peptococcaceae (OR = 0.70; 95%CI = 0.54 to 0.90; P = 0.006), and Eubacterium coprostanoligenes group (OR = 0.68; 95%CI = 0.50 to 0.93; P = 0.016) are genetically determined to provide protection against diabetic neuropathy. Conversely, the presence of Alistipes (OR = 1.65; 95%CI = 1.18 to 2.31; P = 0.003), ChristensenellaceaeR7 group (OR = 1.52; 95%CI = 1.03 to 2.23; P = 0.033), Eggerthella (OR = 1.28; 95%CI = 1.05 to 1.55; P = 0.014), RuminococcaceaeUCG013 (OR = 1.35; 95%CI = 1.01 to 1.82; P = 0.046), and Firmicutes (OR = 1.42; 95%CI = 1.05 to 1.93; P = 0.023) increases the risk of diabetic neuropathy. Moreover, a correlation has been identified between diabetic neuropathy and two gut metabolites: betaine (OR = 0.95; 95%CI = 0.90 to 1.00; P = 0.033) and tyrosine (OR = 1.03; 95%CI = 1.01 to 1.06; P = 0.019). Sensitivity analysis indicated robust results with no sign of heterogeneity or pleiotropy.

Conclusion: The present study elucidated the impact of specific gut microbiota and gut metabolites on the susceptibility to diabetic neuropathy. Interventions targeting the improvement of the gut microbiota diversity and composition hold considerable promise as a potential strategy.

Keywords: Causal relationship; Diabetic neuropathy; Gut metabolites; Gut microbiota; Mendelian randomization analysis.

MeSH terms

  • Diabetic Neuropathies* / genetics
  • Gastrointestinal Microbiome*
  • Genome-Wide Association Study*
  • Humans
  • Mendelian Randomization Analysis*