Nowadays, electrospun fibrous mats are used as drug delivery systems for loading of potential drugs in order to kill cancer cells. In the study, a skin patch for treating melanoma cancer after surgery was made using polycaprolactone and polymetformin microfibers that were loaded with doxycycline (PolyMet/PCL@DOX), an anti-cancer stem cell agent. The morphology, structure, mechanical characteristics, swelling, and porosity of the electrospun microfibers were examined. Drug release andanticancereffectiveness of PolyMet/PCL@DOXwas evaluated against A375 melanoma cancer stem cells using the MTS, Flow cytometry, colony formation and CD44 expression assays. Scanning electron microscopy (SEM) verified the micro fibrous structure with a diameter of about 2.31 µm. The porosity and swelling percentages for microfibers was 73.5 % and 2.9 %, respectively. The tensile strength at the breaking point was equal to 3.84 MPa. The IC50 of PolyMet/PCL@DOX was 7.4 μg/mL. The survival rate of A375 cells after 72 h of PolyMet/PCL@DOX treatment was 43.9 %. The colony formation capacity of A375 cells decreased after PolyMet/PCL@DOX treatment. The level of CD44 expression in the PolyMet/PCL@DOX group decreased compared to the control group. Generally, PolyMet/PCL@DOX microfibers can be a promising candidate as a patch after surgery to eradicate cancer stem cells, effectively.
Keywords: CD44 expression; Cancer stem cells; Doxycycline; Microfibers surgery patch; Polycaprolactone; Polymetformin.
Copyright © 2024 Elsevier B.V. All rights reserved.