Surface electromyography (sEMG) has emerged as a valuable tool for assessing muscle activity in various clinical and research settings. This review focuses on the application of sEMG specifically in the context of paraspinal muscles. The paraspinal muscles play a critical role in providing stability and facilitating movement of the spine. Dysfunctions or alterations in paraspinal muscle activity can lead to various musculoskeletal disorders and spinal pathologies. Therefore, understanding and quantifying paraspinal muscle activity is crucial for accurate diagnosis, treatment planning, and monitoring therapeutic interventions. This review discusses the clinical applications of sEMG in paraspinal muscles, including the assessment of low back pain, spinal disorders, and rehabilitation interventions. It explores how sEMG can aid in diagnosing the potential causes of low back pain and monitoring the effectiveness of physical therapy, spinal manipulative therapy, and exercise protocols. It also discusses emerging technologies and advancements in sEMG techniques that aim to enhance the accuracy and reliability of paraspinal muscle assessment. In summary, the application of sEMG in paraspinal muscles provides valuable insights into muscle function, dysfunction, and therapeutic interventions. By examining the literature on sEMG in paraspinal muscles, this review offers a comprehensive understanding of the current state of research, identifies knowledge gaps, and suggests future directions for optimizing the use of sEMG in assessing paraspinal muscle activity.
Keywords: functional exercise; low back pain; muscle function; paraspinal muscles; spinal disorders; surface electromyography.