The recent report of room-temperature superconductivity at near-ambient pressure in nitrogen-doped lutetium hydride (Lu-H-N) by Dasenbrock-Gammon et al. [Nature 615, 244-250 (2023)] has attracted tremendous attention due to its anticipated great impact on technology. However, the results could not be independently reproduced by other groups worldwide in follow-up studies, which elicited intense controversy. Here, we develop a reliable experimental protocol to minimize the extensively concerned extrinsic influences on the sample by starting the reaction from pure lutetium loaded with an H2/N2 gas mixture in a diamond anvil cell under different pressures and temperatures and simultaneously monitoring the entire chemical reaction process using in situ four-probe resistance measurements. Therefore, we could repeatedly reproduce the near-room temperature upsurge of electrical resistance at a relatively early stage of the chemical reaction. However, the mechanism is suggested to be a metal-to-semiconductor/insulator transition associated with the structural modulation in the non-stoichiometric Lu-H-N, rather than superconductivity.
Keywords: high pressure; lutetium hydride; metal-to-semiconductor/insulator transition; resistance transition; superconductivity.
© The Author(s) 2023. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.