Background: Relapse in pediatric acute myeloid leukemia (pedAML) patients is known to be associated with residual leukemic stem cells (LSC). We have previously shown that epithelial membrane protein 1 (EMP1) is significantly overexpressed in LSC compared to hematological stem cell fractions. EMP1 was also documented as part of the 17-gene stemness score and a 6-membrane protein gene score, both correlating high EMP1 expression with worse overall survival. However, its potential as a therapeutic target in pedAML is still unexplored.
Methods: Association analyses of EMP1 expression with clinical and molecular AML characteristics were performed. Expression of EMP1 was evaluated in pedAML and cord blood samples. Expression in normal blood cells and tissues was evaluated by flow cytometry and immunohistochemistry, respectively.
Results: In silico analyses showed variable mRNA expression of EMP1 in multiple pedAML datasets, and a significant correlation between high EMP1 transcript levels and the presence of inv(16). Flow cytometry showed overexpression of EMP1 in pedAML samples, as well as expression in normal blood subsets. Importantly, immunohistochemistry revealed EMP1 expression in multiple normal tissues.
Conclusion: Although EMP1 presents as an interesting membrane-associated target in pedAML, its abundant expression in normal blood cells and tissues will impede it from further exploration as a therapeutic target.
Impact: EMP1 is highly expressed in multiple cancer types, but expression in acute myeloid leukemia (AML) and normal tissues is unexplored. As EMP1 is investigated in other cancer types, expression in normal tissues and blood cells is relevant in predicting the success of EMP1-targeted therapies. In this study, we showed expression of EMP1 in multiple tissues, predicting high on-target off-tumor toxicity, which will warn other researchers of possible toxicities when generating EMP1-targeted therapy. Finally, we showed that high EMP1 expression is associated with better overall survival of pediatric AML patients, reducing the need for EMP1-targeted therapy.
© 2024. The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc.