Effect of Medial Patellofemoral Complex Reconstruction Technique on Patellofemoral Contact Pressure, Contact Area, and Kinematics

Am J Sports Med. 2024 Jul;52(9):2215-2221. doi: 10.1177/03635465241252818. Epub 2024 Jun 14.

Abstract

Background: Medial patellofemoral ligament (MPFL) reconstruction is considered by many to be the gold standard to treat lateral patellar instability; however, some investigators have reported good clinical results after isolated medial quadriceps tendon-femoral ligament (MQTFL) reconstruction or a combined MPFL/MQTFL reconstruction. A handful of studies have preliminarily investigated the biomechanical consequences of these various medial patellar stabilizing procedures. Despite this, no existing study has included multiple medial patellofemoral complex (MPFC) reconstructions and assessment of lateral patellar translation at distinct flexion angles.

Hypothesis: Combined MPFL/MQTFL reconstruction would restore patellofemoral contact areas, forces, and kinematics closest to the native state compared with isolated reconstruction of the MPFL or MQTFL alone.

Study design: Controlled laboratory study.

Methods: Ten adult cadaveric knee specimens were prepared and analyzed under 5 different conditions: (1) intact state, (2) transected MPFC, (3) isolated MPFL reconstruction, (4) isolated MQTFL reconstruction, and (5) combined MPFL/MQTFL reconstruction. Patellar tilt, lateral patellar translation, patellofemoral contact forces, and patellofemoral contact areas were measured in each condition from 0° to 80° through simulated knee flexion using a custom servohydraulic load frame with pressure sensor technology and a motion capture system for kinematic data acquisition.

Results: The isolated MPFL, isolated MQTFL, and combined MPFL/MQTFL reconstruction conditions produced significantly less lateral patellar tilt compared with the transected MPFC state (P < .05). No statistically significant differences were found when each reconstruction technique was compared with the intact state in patellar tilt, lateral patellar translation, contact forces, and contact areas.

Conclusion: All 3 reconstruction techniques (isolated MPFL reconstruction, isolated MQTFL reconstruction, and combined MPFL/MQTFL reconstruction) restored native knee kinematics, contact forces, and contact areas without overconstraint.

Clinical relevance: Isolated MPFL reconstruction, isolated MQTFL reconstruction, and combined MPFL/MQTFL reconstruction all restore patellofemoral stability comparable with the intact MPFC state without the overconstraint that could be concerning for increasing risk of patellofemoral arthritis.

Keywords: biomechanics; medial patellofemoral ligament reconstruction; medial quadriceps tendon–femoral ligament reconstruction; patellar instability; patellofemoral arthritis; patellofemoral instability.

MeSH terms

  • Adult
  • Aged
  • Biomechanical Phenomena
  • Cadaver
  • Female
  • Humans
  • Joint Instability / physiopathology
  • Joint Instability / surgery
  • Ligaments, Articular / surgery
  • Male
  • Middle Aged
  • Patellofemoral Joint* / surgery
  • Plastic Surgery Procedures / methods
  • Pressure