Nucleosome occupancy plays an important role in chromatin compaction, affecting biological processes by hampering the binding of cis-acting elements such as transcription factors, RNA polymerase machinery, and coregulatory. Accessible regions allow for cis-acting elements to bind DNA and regulate transcription. Here, we detail our protocol to profile nucleosome occupancy and chromatin structure dynamics under drought stress at the genome-wide scale using micrococcal nuclease (MNase) digestion. Combining variable MNase concentration treatments and high-throughput sequencing, we investigate the changes in the overall chromatin state using bread wheat samples from an exemplary drought experiment.
Keywords: Chromatin structural variation; MNase digestion; MNase-seq; Nucleosome occupancy.
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.