Study question: Is resting energy expenditure (REE) altered in women with polycystic ovary syndrome (PCOS)?
Summary answer: Women with PCOS have a reduction in REE, when corrected for fat-free mass, independent of PCOS clinical phenotypes and BMI categories.
What is known already: Obesity is an important issue in women with PCOS, in terms of frequency and pathophysiological implications. It has been hypothesized that obesity may be favoured by alterations in REE, but the studies have been limited and conflicting.
Study design, size, duration: This case-control study was a comparison of 266 women with PCOS and 51 healthy controls, recruited in the Verona 3P study from 2010 to 2021.
Participants/materials, setting, methods: Women with PCOS diagnosed by the Rotterdam criteria, with normal thyroid function and no interfering medications, were referred to the outpatient clinic of a tertiary care centre of endocrinology and metabolism for a measurement of REE. Healthy controls were recruited in the same period and submitted to the same procedure. In all subjects, REE was measured by indirect calorimetry and serum androgens were measured by LC-MS/MS. In women with PCOS, insulin sensitivity was assessed using the hyperinsulinemic-euglycemic clamp.
Main results and the role of chance: REE was similar in women with PCOS and controls. However, REE corrected for fat-free mass (REE/FFM) was significantly lower in women with PCOS than in controls (31.8 ± 4.0 vs 35.4 ± 3.9 kcal/kgFFM·day, P < 0.001). REE/FFM did not differ between normal-weight, overweight, or obese women with PCOS, and each of these subgroups showed lower REE/FFM values than controls. Reduced REE/FFM values were found in each phenotype of the syndrome. In multiple regression analysis, REE/FFM was independently associated with age and PCOS status, but not with fat mass. In PCOS women, REE/FFM was independently and directly associated with ovarian follicle number.
Limitations, reasons for caution: Limitations of the study are the cross-sectional design, which limits the causal inference of the results, and the unavailability of precise information about lifestyle factors, which may be potential confounders. Further prospective studies are needed to establish the importance of this phenomenon in contributing to the weight excess of PCOS.
Wider implications of the findings: A reduction of REE could potentially favour weight gain in women with PCOS and possibly contribute to the altered metabolic profile typical of this condition, even counteracting the therapeutic strategies aimed to reduce excess body fat in these women. Nevertheless, the presence of this abnormality in both obese/overweight and normal-weight patients suggests that other factors must play a role in this phenomenon.
Study funding/competing interest(s): This work was supported by academic grants to PM from the University of Verona (FUR 2010-2022). All authors declare no conflict of interest.
Trial registration number: N/A.
Keywords: PCOS; androgens; indirect calorimetry; insulin sensitivity; resting energy expenditure.
© The Author(s) 2024. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please email: journals.permissions@oup.com.