This Special Issue contains articles on applications of various new approach methodologies (NAMs) in the field of toxicology and risk assessment. These NAMs include in vitro high-throughput screening, quantitative structure-activity relationship (QSAR) modeling, physiologically based pharmacokinetic (PBPK) modeling, network toxicology analysis, molecular docking simulation, omics, machine learning, deep learning, and "template-and-anchor" multiscale computational modeling. These in vitro and in silico approaches complement each other and can be integrated together to support different applications of toxicology, including food safety assessment, dietary exposure assessment, chemical toxicity potency screening and ranking, chemical toxicity prediction, chemical toxicokinetic simulation, and to investigate the potential mechanisms of toxicities, as introduced further in selected articles in this Special Issue.
Keywords: Artificial intelligence; High-throughput screening; Machine learning; New approach methodologies (NAMs); Physiologically based pharmacokinetic (PBPK) modeling; Quantitative structure-activity relationship (QSAR) modeling.
Copyright © 2024 Elsevier Ltd. All rights reserved.