Semi-automatic computed tomography angiography quantification assessment is an alternative method to digital subtraction angiography in intracranial stenosis: a multicenter study

Quant Imaging Med Surg. 2024 Jun 1;14(6):3970-3982. doi: 10.21037/qims-23-1343. Epub 2024 May 21.

Abstract

Background: The recent randomized controlled trials studying intracranial atherosclerotic stenosis (ICAS) have used digital subtraction angiography (DSA) to quantify stenosis and enroll patients. However, some disadvantages of DSA such as invasive features, contrast agent overuse, and X-ray radiation overexposure, were not considered in these studies. This study aimed to explore whether computed tomography angiography (CTA) with semi-automatic analysis could be an alternative method to DSA in quantifying the absolute stenotic degree in clinical trials.

Methods: Patients with 50-99% ICAS were consecutively screened, prospectively enrolled, and underwent CTA and DSA between March 2021 and December 2021 at 6 centers. This study was registered at www.chictr.org.cn (ChiCTR2100052925). The absolute stenotic degree of ICAS on CTA with semi-automatic analysis was calculated by several protocols using minimal/maximum/mean diameters of stenosis and reference site from a semi-automatic analysis software. Intraclass correlation coefficient (ICC) was used to evaluate the reliabilities of quantifying stenotic degree on CTA. The optimal protocol for quantifying ICAS on CTA was explored. The agreements of quantifying ICAS in calcified or non-calcified lesions and 50-69% or 70-99% stenosis on CTA and DSA were assessed.

Results: A total of 191 participants (58.8±10.7 years; 148 men) with 202 lesions were enrolled. The optimal protocol for quantifying ICAS on CTA was calculated as (1 - the minimal diameter of stenosis/the mean diameter of reference) × 100% for its highest agreement with DSA [ICC, 0.955, 95% confidence interval (CI): 0.944-0.966, P<0.001]. Among the 202 lesions, 80.2% (162/202) exhibited severe stenosis on DSA. The accuracy of CTA in detecting severe ICAS was excellent (sensitivity =95.1%, positive predictive value =98.1%). The agreements between DSA and CTA in non-calcified lesions (ICC, 0.960 vs. 0.849) and severe stenosis (ICC, 0.918 vs. 0.841) were higher than those in calcified lesions and moderate stenosis.

Conclusions: CTA with semi-automatic analysis demonstrated an excellent agreement with DSA in quantifying ICAS, making it promising to replace DSA for the measurement of absolute stenotic degree in clinical trials.

Keywords: Computed tomography angiography (CTA); digital subtraction angiography (DSA); intracranial atherosclerotic stenosis (ICAS); semi-automatic quantification.