The functional state of cells is dependent on their microenvironmental context. Prior studies described how polarizing cytokines alter macrophage transcriptomes and epigenomes. Here, we characterized the functional responses of 6 differentially polarized macrophage populations by measuring the dynamics of transcription factor nuclear factor κB (NF-κB) in response to 8 stimuli. The resulting dataset of single-cell NF-κB trajectories was analyzed by three approaches: (1) machine learning on time-series data revealed losses of stimulus distinguishability with polarization, reflecting canalized effector functions. (2) Informative trajectory features driving stimulus distinguishability ("signaling codons") were identified and used for mapping a cell state landscape that could then locate macrophages conditioned by an unrelated condition. (3) Kinetic parameters, inferred using a mechanistic NF-κB network model, provided an alternative mapping of cell states and correctly predicted biochemical findings. Together, this work demonstrates that a single analyte's dynamic trajectories may distinguish the functional states of single cells and molecular network states underlying them. A record of this paper's transparent peer review process is included in the supplemental information.
Keywords: NF-κB dynamics; inflammation; innate immunity; machine learning; macrophage; math modeling; microenvironmental context; polarization; stimulus-specific responses; trajectory data.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.