Insight on cytotoxic NHC gold(I) halide complexes evaluated in multifaceted culture systems

Curr Res Toxicol. 2024 May 23:6:100174. doi: 10.1016/j.crtox.2024.100174. eCollection 2024.

Abstract

Gold complexes can be a useful system in the fight against cancer. Although many studies have been carried out on in vitro 2D cell culture models embryotoxic assays are particularly lacking. Embryotoxicity and DNA damage are critical concerns in drug development. In this study, the effects of a new N-Heterocyclic carbene (NHC)-Au compound (Bromo[1,3-di-4-methoxybenzyl-4,5-bis(4-methoxyphenyl)imidazol-2-ylidene]gold(I)) at different concentrations were explored using multifaceted approach, encompassing 2D cancer cell cultures, in vivo zebrafish and in vitro bovine models, and compared with a consolidated similar complex (Bromo[1,3-diethyl-4,5-bis(4-methoxyphenyl)imidazol-2-ylidene]gold(I)). The results obtained from 2D cancer cell cultures revealed concentration-dependent effects of the gold compounds by estimating the cytotoxicity with MTT assay and cellular damage as indicated by LDH release. Selected concentrations of gold complexes demonstrated no adverse effects on zebrafish embryo development. However, in bovine embryos, these same concentrations led to significant impairments in the early developmental stages, triggering cell apoptosis and reducing blastocyst competence. These findings underscore the importance of evaluating drug effects across different model systems to comprehensively assess their safety and potential impact on embryonic development.

Keywords: 2D culture system; Apoptosis; Bovine model; Embryotoxicity; NHC-Au complexes; Zebrafish model.