Trends in surface plasmon resonance biosensing: materials, methods, and machine learning

Anal Bioanal Chem. 2024 Oct;416(24):5221-5232. doi: 10.1007/s00216-024-05367-w. Epub 2024 Jun 6.

Abstract

Surface plasmon resonance (SPR) proves to be one of the most effective methods of label-free detection and has been integral for the study of biomolecular interactions and the development of biosensors. This trend delves into the latest SPR research and progress built upon the Kretschmann configuration, a pivotal platform, and highlights three key developments that have enhanced the capabilities of the technique. We will first cover a range of explorations of novel plasmonic materials that have shaped SPR performance. Innovative signal transduction and collection, which leverages traditional materials and emerging alternatives, will then be discussed. Finally, the evolving landscape of data analysis, including the integration of machine learning algorithms to navigate complex SPR datasets, will be reviewed. We will also discuss the implementation of these improvements that have enabled new biosensing functions. These advancements not only pave the way for enhanced biosensing in general but also open new avenues for the technique to play a more significant role in research concerning human health.

Keywords: Biosensing; Machine learning; Plasmonic materials; Surface plasmon resonance; The Kretschmann configuration.

Publication types

  • Review

MeSH terms

  • Biosensing Techniques* / instrumentation
  • Biosensing Techniques* / methods
  • Humans
  • Machine Learning*
  • Surface Plasmon Resonance* / methods