Both irradiation and dislocations have been proposed as routes to rationally manipulate spatial distribution and micromorphology of precipitate. An interesting effect emerges in Fe-10at.%Cu-3at.%Mn-1.5at.%Ni-1.5at.%Al alloy due to the synergistic-competitive roles of dislocation loop and irradiation. Base on cascade mixing, vacancy-interstitial atoms and dislocation stress field model, we examine nucleation and growth dynamics of Cu-rich precipitates, where both dislocation loop and irradiation act in conjunction. Analytical treatments identify regimes, where the distribution of elements and point defects due to irradiation and dislocations are specific to the Cu-rich precipitates. Simulation results reveal that density, size and distribution of Cu-rich precipitates are a manifestation of the competing effects of the dislocation loop and the irradiation rate. More specifically, the dislocation loop preferentially assists the formation of precipitates and new dislocations at lower irradiation rates. Only the irradiation induces the formation of Cu-rich precipitates with the irradiation rate continues to increase. Equipped with molecular dynamics, where reproduces major interaction features of the solutes with point defects under displacement cascade, can verify multi-component morphologies of Cu-rich precipitates. This modeling framework provides an avenue to explore the role of dislocation loop and irradiation on the microstructural evolution of Cu-rich precipitates.
Keywords: Cascade mixing; Cu-rich precipitates; Dislocation loop; Phase-field model; Vacancy-interstitial atoms.
© 2024. The Author(s).