Ziziphus spina-christi L. extract attenuates bleomycin-induced lung fibrosis in mice via regulating TGF-β1/SMAD pathway: LC-MS/MS Metabolic profiling, chemical composition, and histology studies

Biomed Pharmacother. 2024 Jul:176:116823. doi: 10.1016/j.biopha.2024.116823. Epub 2024 Jun 3.

Abstract

Ancient Egyptians (including Bedouins and Nubians) have long utilized Ziziphus spina-christi (L.), a traditional Arabian medicinal herb, to alleviate swellings and inflammatory disorders. It is also mentioned in Christian and Muslim traditions. Ziziphus spina-christi L. (Family: Rhamnaceae) is a plentiful source of polyphenols, revealing free radical scavenging, antioxidant, metal chelating, cytotoxic, and anti-inflammatory activities. Herein, different classes of the existing bioactive metabolites in Z. spina-christi L. were detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the first time. The study also aimed to assess the anti-inflammatory and antifibrotic properties of Z. spina-christi L. extract against bleomycin-induced lung fibrosis in an experimental mouse model. 32 male Swiss Albino mice were assigned into 4 groups; the first and second were the normal control group and the bleomycin positive control (single 2.5 U/kg bleomycin intratracheal dose). The third and fourth groups received 100 and 200 mg/kg/day Z. spina-christi L. extract orally for 3 weeks, 2 weeks before bleomycin, and 1 week after. The bioactive metabolites in Z. spina-christi L. extract were identified as phenolic acids, catechins, flavonoids, chalcones, stilbenes, triterpenoid acids, saponins, and sterols. The contents of total phenolic compounds and flavonoids were found to be 196.62 mg GAE/gm and 33.29 mg QE/gm, respectively. In the experimental study, histopathological examination revealed that lung fibrosis was attenuated in both Z. spina-christi L.- treated groups. Z. spina-christi L. extract downregulated the expression of nuclear factor kappa B (NF-κB) p65 and decreased levels of the inflammatory markers tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and c-Jun N-terminal kinase (JNK) in lung tissue. Z. spina-christi L. also downregulated the expression of the fibrotic parameters collagen-1, alpha-smooth muscle actin (α-SMA), transforming growth factor-beta 1 (TGF-β1), matrix metalloproteinase-9 (MMP-9) and SMAD3, with upregulation of the antifibrotic SMAD7 in lung tissue. Overall, the present study suggests a potential protective effect of Z. spina-christi L. extract against bleomycin-induced lung fibrosis through regulation of the TGF-β1/SMAD pathway.

Keywords: LC-MS/MS; SMAD pathway; Ziziphus spina-christi L.; antioxidant; drug discovery; lung fibrosis; public health; transforming growth factor-beta 1.

MeSH terms

  • Animals
  • Anti-Inflammatory Agents / pharmacology
  • Bleomycin*
  • Chromatography, Liquid / methods
  • Liquid Chromatography-Mass Spectrometry
  • Lung / drug effects
  • Lung / metabolism
  • Lung / pathology
  • Male
  • Metabolomics / methods
  • Mice
  • Plant Extracts* / pharmacology
  • Pulmonary Fibrosis* / chemically induced
  • Pulmonary Fibrosis* / drug therapy
  • Pulmonary Fibrosis* / metabolism
  • Pulmonary Fibrosis* / pathology
  • Signal Transduction* / drug effects
  • Smad Proteins* / metabolism
  • Tandem Mass Spectrometry* / methods
  • Transforming Growth Factor beta1* / metabolism
  • Ziziphus* / chemistry

Substances

  • Plant Extracts
  • Bleomycin
  • Transforming Growth Factor beta1
  • Smad Proteins
  • Anti-Inflammatory Agents