Detection of chemical substances is essential for living a healthy and cultural life in the modern world. One type of chemical sensing technology, biosensing, uses biological components with molecular recognition abilities, enabling a broad spectrum of sensing targets. Short single-stranded nucleic acids called aptamers are one of the biological molecules used in biosensing, and sensing methods combining aptamers and hydrogels have been researched for simple sensing applications. In this research, we propose a hydrogel-based biosensor that uses aptamer recognition and DNA-driven swelling hydrogels for the rapid detection of histamine. Aptamer recognition and DNA-driven swelling hydrogels are directly linked via DNA molecular reactions, enabling rapid sensing. We selected histamine, a major food poisoning toxin, as our sensing target and detected the existence of histamine within 10 min with significance. Because this sensing foundation uses aptamers, which have a vast library of targets, we believe this system can be expanded to various targets, broadening the application of hydrogel-based biosensors.
Keywords: DNA nanotechnology; aptamer; biosensor; chemical sensor; hydrogel.