The DNA Methyltransferase Inhibitor 5-Aza-4'-thio-2'-Deoxycytidine Induces C>G Transversions and Acute Lymphoid Leukemia Development

Cancer Res. 2024 Aug 1;84(15):2518-2532. doi: 10.1158/0008-5472.CAN-23-2785.

Abstract

DNA methyltransferase inhibitors (DNMTi), most commonly cytidine analogs, are compounds that decrease 5'-cytosine methylation. DNMTi are used clinically based on the hypothesis that cytosine demethylation will lead to re-expression of tumor suppressor genes. 5-Aza-4'-thio-2'-deoxycytidine (Aza-TdCyd or ATC) is a recently described thiol-substituted DNMTi that has been shown to have anti-tumor activity in solid tumor models. In this study, we investigated the therapeutic potential of ATC in a murine transplantation model of myelodysplastic syndrome. ATC treatment led to the transformation of transplanted wild-type bone marrow nucleated cells into lymphoid leukemia, and healthy mice treated with ATC also developed lymphoid leukemia. Whole-exome sequencing revealed 1,000 acquired mutations, almost all of which were C>G transversions in a specific 5'-NCG-3' context. These mutations involved dozens of genes involved in human lymphoid leukemia, such as Notch1, Pten, Pax5, Trp53, and Nf1. Human cells treated in vitro with ATC showed 1,000 acquired C>G transversions in a similar context. Deletion of Dck, the rate-limiting enzyme for the cytidine salvage pathway, eliminated C>G transversions. Taken together, these findings demonstrate a highly penetrant mutagenic and leukemogenic phenotype associated with ATC. Significance: Treatment with a DNA methyltransferase inhibitor generates a distinct mutation signature and triggers leukemic transformation, which has important implications for the research and clinical applications of these inhibitors.

MeSH terms

  • Animals
  • Azacitidine* / pharmacology
  • DNA Methylation / drug effects
  • Decitabine / pharmacology
  • Enzyme Inhibitors / pharmacology
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Myelodysplastic Syndromes / drug therapy
  • Myelodysplastic Syndromes / genetics
  • Myelodysplastic Syndromes / pathology
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma* / drug therapy
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma* / genetics
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma* / pathology

Substances

  • Azacitidine
  • Enzyme Inhibitors
  • Decitabine