Application of 3D‑printed porous titanium interbody fusion cage vs. polyether ether ketone interbody fusion cage in anterior cervical discectomy and fusion: A systematic review and meta‑analysis update

Exp Ther Med. 2024 May 21;28(1):290. doi: 10.3892/etm.2024.12579. eCollection 2024 Jul.

Abstract

The present study aimed to compare the differences between 3D-printed porous titanium and polyether ether ketone (PEEK) interbody fusion cages for anterior cervical discectomy and fusion (ACDF). Literature on the application of 3D-printed porous titanium and PEEK interbody fusion cages for ACDF was searched in the PubMed, Web of Science, Embase, China National Knowledge Infrastructure, Wanfang and VIP databases. A total of 1,181 articles were retrieved and 12 were finally included. The Cochrane bias risk assessment criteria and Newcastle-Ottawa scale were used for quality evaluation and Review Manager 5.4 was used for data analysis. The 3D cage group was superior to the PEEK cage group in terms of operative time [mean difference (MD): -7.68; 95% confidence interval (CI): -11.08, -4.29; P<0.00001], intraoperative blood loss (MD: -6.17; 95%CI: -10.56, -1.78; P=0.006), hospitalization time (MD: -0.57; 95%CI: -0.86, -0.28: P=0.0001), postoperative complications [odds ratio (OR): 0.35; 95%CI: 0.15, 0.80; P=0.01], C2-7 Cobb angle (MD: 2.85; 95%CI: 1.45, 4.24; P<0.0001), intervertebral space height (MD: 1.20; 95%CI: 0.54, 1.87; P=0.0004), Japanese Orthopaedic Association Assessment of Treatment (MD: 0.69; 95%CI: 0.24, 1.15; P=0.003) and visual analogue scale score (MD: -0.43; 95%CI: -0.78, -0.07; P=0.02). The difference was statistically significant, while there was no significant difference between the two groups in terms of fusion rate (OR: 1.74; 95%CI: 0.71, 4.27; P=0.23). The use of 3D-printed porous titanium interbody fusion cage in ACDF has the advantages of short operation time, less bleeding loss, shorter hospitalization time and fewer postoperative complications. It can better maintain the cervical curvature and intervertebral height, relieve pain and accelerate postoperative functional recovery.

Keywords: 3D printing; anterior cervical discectomy and fusion; intervertebral fusion cage; meta-analysis; polyether ether ketone; titanium.

Grants and funding

Funding: The present study was supported by the Changzhi City Science and Technology Bureau Fund Project (grant no. 2022sy008) and the Heping Hospital Affiliated to Changzhi Medical College Youth Start-up Fund Project.