SNOMED CT is the most comprehensive clinical terminology employed worldwide and enhancing its accuracy is of utmost importance. In this work, we introduce an automated approach to identifying erroneous IS-A relations in SNOMED CT. We first extract linked concept-pairs from which we generate Term Difference Pairs (TDPs) that contain differences between the concepts. Given a TDP, if the reversed TDP also exists and the number of linked-pairs generating this TDP is less than those generating the reversed TDP, then we suggest the former linked-pairs as potentially erroneous IS-A relations. We applied this approach to the Clinical finding and Procedure subhierarchies of the 2022 March US Edition of SNOMED CT, and obtained 52 potentially erroneous IS-A relations and a candidate list of 48 linked-pairs. A domain expert confirmed 41 out of 52 (78.8%) are valid and identified 26 erroneous IS-A relations out of 48 linked-pairs demonstrating the effectiveness of the approach.
©2024 AMIA - All rights reserved.