Intracellular pH critically affects various biological processes, and an appropriate cytoplasmic pH is essential for ensuring bacterial growth. Glucose is the preferred carbon source for most heterotrophs; however, excess glucose often causes the accumulation of acidic metabolites, lowering the intracellular pH and inhibiting bacterial growth. Bacillus thuringiensis can effectively cope with glucose-induced stress; unfortunately, little is known about the regulators involved in this process. Here, we document that the target of the dual-function sRNA YhfH, the lipR gene, encodes a LacI-family transcription factor LipR as an intracellular pH regulator when B. thuringiensis BMB171 is suddenly exposed to glucose. Under glucose conditions, lipR deletion leads to early growth arrest by causing a rapid decrease in intracellular pH (~5.4). Then, the direct targets and a binding motif (GAWAWCRWTWTCAT) of LipR were identified based on the electrophoretic mobility shift assay, the DNase-I footprinting assay, and RNA sequencing, and the gapN gene encoding a key enzyme in glycolysis was directly inhibited by LipR. Furthermore, Ni2+ is considered a possible effector for LipR. In addition to YhfH, the lipR expression was coregulated by itself, CcpA, and AbrB. Our study reveals that LipR plays a balancing role between glucose metabolism and intracellular pH in B. thuringiensis subjected to glucose stress.
Keywords: LacI‐type transcription factor; LipR; glucose; intracellular pH.
© 2023 The Authors. mLife published by John Wiley & Sons Australia, Ltd. on behalf of Institute of Microbiology, Chinese Academy of Sciences.