Reactions of β-diketiminato alkaline earth alkyldiboranate derivatives [(BDI)Ae{pinBB(R)pin}] (BDI = HC{(Me)CNDipp}2; Dipp = 2,6-i-Pr2C6H3; Ae = Mg, R = n-Bu or Ae = Ca, R = n-hexyl) with t-BuNC provide access to the respective group 2 derivatives of unprecedented diborata-allyl, {(pinB)2CNBpin(t-Bu)}-, anions. Although the necessary mode of B-C bond cleavage implicated in these transformations could not be elucidated, further studies of the reactivity of magnesium triboranates toward isonitriles delivered a more general and rational synthetic access to analogous anionic moieties. Extending this latter reactivity to a less symmetric triboranate variant also provided an isomeric Mg-C-bonded dibora-alkyl species and sufficient experimental insight to prompt theoretical evaluation of this reactivity. DFT calculations, thus, support a reaction pathway predicated on initial RNC attack at a peripheral boron centre and the intermediacy of such dibora-alkyl intermediates.
This journal is © The Royal Society of Chemistry.