Bacterial infections lack reliable, specific, and quick detection methods, which incur substantial costs to patients and caretakers. Our team conjugated the FDA-approved fluorescent dye indocyanine green (ICG) with a maltotriose sugar, resulting in two highly specific imaging agents (ICG-DBCO-1-Maltotriose and ICG-Amide-1-Maltotriose) for detecting bacterial infections. We then evaluated the two derivatives using fluorescence imaging (FLI), bioluminescence imaging (BLI), and photoacoustic imaging (PAI) in bacterial infection murine models. Our findings indicate that both imaging agents can correlate with and reliably detect the infection site using FLI and PAI for both Gram-negative and Gram-positive strains, with various bacterial loads. Furthermore, the differences in pharmacokinetic (PK) properties between the two agents allow for one to be used for immediate imaging (2-4 h postinjection), while the other is more effective for longitudinal studies (18-40 h postinjection).
Keywords: bacterial infection; fluorescence imaging; indocyanine green; maltotriose; photoacoustic imaging.