Cellular senescence is a significant risk factor for aging and age-related diseases (ARD). The canonical senolytics Dasatinib and Quercetin (DQ) have shown promise in clearing senescent cells (SnCs); however, the lack of selectivity poses a challenge in achieving optimal outcomes. Despite the recent occurrence of nanomaterial-based approaches targeting SnCs, limited therapeutic effects, and potential toxicity still remain a major concern. Herein, a "double locks-like" nanoplatform is developed that integrated Galactan coating and mesoporous polydopamine to encase the senolytic drug DQ. By this way, DQ is only released in SnCs that are featured with higher levels of β-galactosidase (β-gal) and low PH. Additionally, the nanoparticles are equipped with 2,2,6,6-Tetramethylpiperidine-1-oxyl (Tempo) to gain enhanced photothermal converting potential. Consequently, the synthesized nanosenolytics demonstrate remarkable specificity and efficacy in eradicating SnCs, and accordingly reverse pulmonary fibrosis in mice without affecting normal tissues. Upon exposure of near-infrared (NIR) light, the nanoparticles demonstrate to efficiently remove senescent tumor cells inducted by chemotherapy, thereby hindering the outgrowth and metastasis or breast cancer. Collectively, the present study develops an "On/Off" switchable nanoplatform in response to SnCs, and produces a more safe, efficient, and feasible way to delay aging or alleviate age-associated diseases.
Keywords: breast cancer; dasatinib and quercetin; pulmonary fibrosis; targeting senescent cells; β‐galactosidase; “on/off” switchable nanoplatform.
© 2024 The Author(s). Advanced Healthcare Materials published by Wiley‐VCH GmbH.