Mice often undergo painful procedures and surgeries as part of biomedical research protocols. Buprenorphine, a partial μ-opioid receptor agonist and κ receptor antagonist, is commonly used to alleviate the pain associated with such procedures. Due to its pharmacokinetic profile, buprenorphine requires frequent dosing, resulting in handling stress that can impact animal welfare and study data. A long-acting transdermal buprenorphine formulation (LA-bup) was recently approved for use in cats to provide up to 4 d of postoperative analgesia. In this study, we characterized the pharmacokinetics of a single topical dosing of LA-bup in male and female CD-1 mice administered a 0.36-mg or 18-μL topical dose at select time points. Plasma buprenorphine concentrations were evaluated at 0.25, 0.5, 1, 1.5, 2, 4, 8, 24, 48, and 72 h (n = 3 mice/time point) and remained above the purported therapeutic threshold (1 ng/mL) from 1 to 24 h postadministration. Repeated daily dosing at 24 and 48 h demonstrated plasma levels above 1 ng/mL for up to 72 h with minimal accumulation or changes in maximal concentrations over time. Inadvertent transfer of the topical drug to nondosed mice in the same cage was evaluated by measuring plasma buprenorphine concentrations in nondosed mice cohoused with a single-dosed mouse. Male mice did not demonstrate transfer of drug via grooming or interactions, yet 2 out of 26 nondosed female mice had detectable buprenorphine plasma levels indicating a relatively low incidence of cross-ingestion in cohoused female mice. This study demonstrates that LA-bup is a promising analgesic in mice that could be used for tailored analgesia strategies, depending on the surgical model or duration of analgesic therapy.