Compound 7-16 was designed and synthesized in our previous study and was identified as a more potential selective 5-HT2A receptor antagonist and inverse agonist for treating Parkinson's disease psychosis (PDP). Then, the metabolism, disposition, and excretion properties of 7-16 and its potential inhibition on transporters were investigated in this study to highlight advancements in the understanding of its therapeutic mechanisms. The results indicate that a total of 10 metabolites of 7-16/[14C]7-16 were identified and determined in five species of liver microsomes and in rats using UPLC-Q Exactive high-resolution mass spectrometry combined with radioanalysis. Metabolites formed in human liver microsomes could be covered by animal species. 7-16 is mainly metabolized through mono-oxidation (M470-2) and N-demethylation (M440), and the CYP3A4 isozyme was responsible for both metabolic reactions. Based on the excretion data in bile and urine, the absorption rate of 7-16 was at least 74.7%. 7-16 had weak inhibition on P-glycoprotein and no effect on the transport activity of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 transporters. The comprehensive pharmacokinetic properties indicate that 7-16 deserves further development as a new treatment drug for PDP.
Keywords: Parkinson’s disease psychosis; UPLC-Q Exactive HRMS; excretion; metabolic enzyme phenotype; metabolite identification; radioanalysis.