Artificial Intelligence in Cardiovascular Disease Prevention: Is it Ready for Prime Time?

Curr Atheroscler Rep. 2024 Jul;26(7):263-272. doi: 10.1007/s11883-024-01210-w. Epub 2024 May 23.

Abstract

Purpose of review: This review evaluates how Artificial Intelligence (AI) enhances atherosclerotic cardiovascular disease (ASCVD) risk assessment, allows for opportunistic screening, and improves adherence to guidelines through the analysis of unstructured clinical data and patient-generated data. Additionally, it discusses strategies for integrating AI into clinical practice in preventive cardiology.

Recent findings: AI models have shown superior performance in personalized ASCVD risk evaluations compared to traditional risk scores. These models now support automated detection of ASCVD risk markers, including coronary artery calcium (CAC), across various imaging modalities such as dedicated ECG-gated CT scans, chest X-rays, mammograms, coronary angiography, and non-gated chest CT scans. Moreover, large language model (LLM) pipelines are effective in identifying and addressing gaps and disparities in ASCVD preventive care, and can also enhance patient education. AI applications are proving invaluable in preventing and managing ASCVD and are primed for clinical use, provided they are implemented within well-regulated, iterative clinical pathways.

Keywords: Artificial Intelligence; Big Data; Cardiovascular prevention; Coronary Artery Calcium; Machine Learning; health equity.

Publication types

  • Review

MeSH terms

  • Artificial Intelligence*
  • Cardiovascular Diseases* / diagnosis
  • Cardiovascular Diseases* / prevention & control
  • Humans
  • Risk Assessment / methods