The resuspension of phosphorus (P) in sediments has the most significant contribution to the overlying water. The PP release characterization during resuspension was investigated. The results indicated that the P in suspensions had more release risk compared to the sediments. The particulate P (PP) concentration (0.54 mg L-1) under high-intensity rotational speed (250 rad min-1) was about five times higher than others (0.11 mg L-1). The sorption parameters of zero equilibrium P concentration (EPC0F) and soluble reactive P (SRP) were significantly correlated with each other (p < 0.01, r = 0.73). Suspended solids expressed stronger P source than sediments. The values of EPC0F was highly significantly correlated with the sorption coefficient (KF) and native adsorbed P (NAP) (p < 0.01). The mean values of NAP were 0.0612 mg g-1 and 0.0604 mg g-1 in the Prophase and Metaphase, respectively, and 0.0586 mg g-1 at Anaphase. The values of P sorption index (PSI) ranged from 0.4359 to 0.6862 L g-1, with mean values of 0.5350 L g-1 (Prophase), 0.6061 L g-1 (Metaphase), and 0.4967 L g-1 (Anaphase). The degree of P saturation (DPS) decreased in the order of Anaphase (2.73%) > Prophase (2.53%) > Metaphase (2.12%). The release risk index of P (ERI) decreased in the order of Anaphase (5.47%) > Prophase (4.72%) > Metaphase (3.59%), with a range of 2.12%-8.56%. To fast and slow scale, the results of NaOH-P (V1<0, V2>0) contribution indicated that the persistent disturbance promoted the release of adsorbed dissolved PP from NaOH-P in suspended sediment to the overlying water. The contribution of HCl-P (V2 > 0) was positive in the Anaphase of the slow scale, and HCl-P was a PP source in the frequently disturbing conditions.
Keywords: Phosphorus; Release; Resuspension; Sediment; Sorption.
Copyright © 2024 Elsevier Ltd. All rights reserved.