Characterization and removal of microplastics in the Guheshwori Wastewater Treatment Plant, Nepal

Sci Total Environ. 2024 Jul 20:935:173324. doi: 10.1016/j.scitotenv.2024.173324. Epub 2024 May 19.

Abstract

Contamination of river water systems by microplastic particles (MPPs) is one of the emerging global environmental concerns with potentially widespread ecological, socioeconomic, and health implications. A wastewater treatment plant (WWTP) processes and treats wastewater to remove pollutants and release safe water into the environment. There has been limited research on the characterization of microplastics and their removal in WWTP in South Asia. In this work, we report on the characterization of microplastics in wastewater and sludge samples (n = 300) from Guheshwori WWTP located on the bank of the Bagmati River in Kathmandu city, Nepal representing inlet, secondary aeration tank (SAT), outlet, and sludge from November 2021 to November 2022. On average, we detected 31.2 ± 17.3 MPPs/L, 11.2 ± 9.4 MPPs/L, 8.5 ± 5.6 MPPs/L, and 6.6 ± 4.8 MPPs/g in the samples collected from inlet, SAT, outlet, and sludge, respectively. Commonly found MPPs were in the form of fiber, fragments, foam, and pellets. Largely, MPPs were red, yellow, white, blue, and black. Among the 44 μm - 150 μm, 150 μm - 500 μm and 500 μm - 5 mm categories of size fractions, the most dominant fractions were 500 μm - 150 μm in inlet, SAT, and sludge, and 150 μm - 44 μm in the outlet sampling unit. The Guheshwori WWTP was able to remove 72.5 % of MPPs on average, that mostly occurred in the inlet. The effluent released into the river and the sludge still contained a significant number of MPPs.

Keywords: Bagmati River; Developing country; Effluent; Microplastics pollution; Sludge; South Asia.