Most biosynthetic gene clusters (BGCs) are functionally inaccessible by using fermentation methods. Bioinformatic-coupled total synthesis provides an alternative approach for accessing BGC-encoded bioactivities. To date, synthetic bioinformatic natural product (synBNP) methods have focused on lipopeptides containing simple lipids. Here we increase the bioinformatic and synthetic complexity of the synBNP approach by targeting BGCs that encode N-cinnamoyl lipids. This led to our synthesis of cinnamosyn, a 10-mer N-cinnamoyl-containing peptide that is cytotoxic to human cells.