Ge-Sb-Te (GST) alloys are leading phase-change materials for data storage due to the fast phase transition between amorphous and crystalline states. Ongoing research aims at improving the stability of the amorphous phase to improve retention. This can be accomplished by the introduction of carbon as a dopant to Ge2Sb2Te5, which is known to alter the short- and mid-range structure of the amorphous phase and form covalently bonded C clusters, both of which hinder crystallization. The relative importance of these processes as a function of C concentration is not known. We used molecular dynamics simulation based on density functional theory to study how carbon doping affects the atomic structure of GST-C. Carbon doping results in an increase in tetrahedral coordination, especially of Ge atoms, and this is known to stabilize the amorphous phase. We observe an unexpected, non-monotonous trend in the number of tetrahedral bonded Ge with the amount of carbon doping. Our simulations show an increase in the number of tetrahedral bonded Ge up to 5 at.% C, after which the number saturates and begins to decrease above 14 at.% C. The carbon atoms aggregate into clusters, mostly in the form of chains and graphene flakes, leaving less carbon to disrupt the GST matrix at higher carbon concentrations. Different degrees of carbon clustering can explain divergent experimental results for recrystallization temperature for carbon doped GST.
© 2024 Author(s). Published under an exclusive license by AIP Publishing.