Programmed cell death protein-1 (PD-1) is a membrane protein expressed on the surface of activated T-cells, B-cells, natural killer cells, dendritic cells, macrophages, and monocytes. Inhibition of the PD-1/PD-L1 interaction by monoclonal antibodies (mAbs) has many therapeutic benefits and has led to a major advance in the treatment of various types of tumors. Due to the large size and immunogenicity of the antibodies (Abs), using small molecules such as nanobodies (nanobodies or VHH) is more appropriate for this purpose. In this research, the complementarity determining regions (CDR) grafting method was used to produce anti-PD-1 nanobody. For producing the grafted anti-PD-1 nanobody, CDRs from the tislelizumab mAb were grafted into the frameworks of a nanobody whose sequence is similar to the tislelizumab mAb. Also, the site-directed mutagenesis method was used to produce two mutated anti-PD-1 nanobodies which increased the affinity of grafted anti-PD-1 nanobodies. Two amino acid substitutions (Tyr97Arg and Tyr102Arg) in the VHH-CDR3 were used to improve grafted nanobody affinity and the binding capacity of the mutated nanobodies. The binding of the anti-PD-1 nanobodies and PD-1 antigen (Ag) was confirmed by Dot blot, western blot, and indirect ELISA analysis. According to the results of these in silico and in vitro studies, the binding between grafted and mutated nanobodies with PD-1 was confirmed. Also, our findings show that site-directed mutagenesis can increase the affinity of nanobodies.
Keywords: CDR grafting; Nanobody; PD-1 tumor marker; Site-directed mutagenesis.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.