Type II Interleukin-4 Receptor Activation in Basal Breast Cancer Cells Promotes Tumor Progression via Metabolic and Epigenetic Modulation

Int J Mol Sci. 2024 Apr 24;25(9):4647. doi: 10.3390/ijms25094647.

Abstract

Interleukin-4 (IL4) is a Th2 cytokine that can signal through two different receptors, one of which-the type II receptor-is overexpressed by various cancer cells. Previously, we have shown that type II IL4 receptor signaling increases proliferation and metastasis in mouse models of breast cancer, as well as increasing glucose and glutamine metabolism. Here, we expand on those findings to determine mechanistically how IL4 signaling links glucose metabolism and histone acetylation to drive proliferation in the context of triple-negative breast cancer (TNBC). We used a combination of cellular, biochemical, and genomics approaches to interrogate TNBC cell lines, which represent a cancer type where high expression of the type II IL4 receptor is linked to reduced survival. Our results indicate that type II IL4 receptor activation leads to increased glucose uptake, Akt and ACLY activation, and histone acetylation in TNBC cell lines. Inhibition of glucose uptake through the deletion of Glut1 ablates IL4-induced proliferation. Additionally, pharmacological inhibition of histone acetyltransferase P300 attenuates IL4-mediated gene expression and proliferation in vitro. Our work elucidates a role for type II IL4 receptor signaling in promoting TNBC progression, and highlights type II IL4 signaling, as well as histone acetylation, as possible targets for therapy.

Keywords: glucose; histone acetylation; interleukin-13; interleukin-4.

MeSH terms

  • Acetylation
  • Animals
  • Cell Line, Tumor
  • Cell Proliferation*
  • Disease Progression
  • Epigenesis, Genetic*
  • Female
  • Gene Expression Regulation, Neoplastic
  • Glucose / metabolism
  • Glucose Transporter Type 1 / genetics
  • Glucose Transporter Type 1 / metabolism
  • Humans
  • Interleukin-4 / genetics
  • Interleukin-4 / metabolism
  • Receptors, Interleukin-4* / genetics
  • Receptors, Interleukin-4* / metabolism
  • Signal Transduction
  • Triple Negative Breast Neoplasms* / genetics
  • Triple Negative Breast Neoplasms* / metabolism
  • Triple Negative Breast Neoplasms* / pathology

Substances

  • Glucose
  • Glucose Transporter Type 1
  • Interleukin-4
  • Receptors, Interleukin-4