Olive leaf extract-derived chitosan-metal nanocomposite: Green synthesis and dual antimicrobial-anticancer action

Int J Biol Macromol. 2024 Jun;270(Pt 2):132252. doi: 10.1016/j.ijbiomac.2024.132252. Epub 2024 May 9.

Abstract

In this study, we developed a novel nanocomposite by synthesizing zinc (ZnNPs), copper (CuNPs), and silver (AgNPs) nanoparticles using olive leaf extract and incorporating them into a chitosan polymer. This approach combines the biocompatibility of chitosan with the antimicrobial and anticancer properties of metal nanoparticles, enhanced by the phytochemical richness of olive leaf extract. The significance of our research lies in its potential to offer a biodegradable and stable alternative to conventional antibiotics and cancer treatments, particularly in combating multidrug-resistant bacteria and various cancer types. Comprehensive characterization through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and Transmission Electron Microscopy (TEM) confirmed the successful synthesis of the nanocomposites, with an average size of ~22.6 nm. Phytochemical analysis highlighted the antioxidant-rich composition of both the olive leaf extract and the nanoparticles themselves. Functionally, the synthesized nanoparticles exhibited potent antimicrobial activity against multidrug-resistant bacterial strains, outperforming traditional antibiotics by inhibiting key resistance genes (ermC, tetX3-q, blaZ, and Ery-msrA). In anticancer assessments, the nanoparticles showed selective cytotoxicity towards cancer cells in a concentration-dependent manner, with CuNPs and AgNPs showing particularly strong anticancer effects, while demonstrating minimal toxicity towards normal cells. ZnNPs were noted for their low cytotoxicity, highlighting the safety profile of these nanoparticles. Further, the nanoparticles induced apoptosis in cancer cells, as evidenced by the modulation of oncogenes (P21, P53, and BCL2), suggesting their therapeutic potential. The findings of our study underscore the versatile applications of these biogenic nanoparticles in developing safer and more effective antimicrobial and anticancer therapies.

Keywords: Biomedical applications; Chitosan; Green synthesis; Nanocomposite; Nanoparticles, olive leaf extract, anticancer.

MeSH terms

  • Anti-Bacterial Agents / chemical synthesis
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Anti-Infective Agents / chemical synthesis
  • Anti-Infective Agents / chemistry
  • Anti-Infective Agents / pharmacology
  • Antineoplastic Agents* / chemical synthesis
  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Cell Line, Tumor
  • Chitosan* / chemistry
  • Chitosan* / pharmacology
  • Green Chemistry Technology*
  • Humans
  • Metal Nanoparticles* / chemistry
  • Microbial Sensitivity Tests
  • Nanocomposites* / chemistry
  • Olea* / chemistry
  • Plant Extracts* / chemistry
  • Plant Extracts* / pharmacology
  • Plant Leaves* / chemistry
  • Silver / chemistry
  • Silver / pharmacology

Substances

  • Chitosan
  • Plant Extracts
  • Antineoplastic Agents
  • Anti-Infective Agents
  • Anti-Bacterial Agents
  • Silver