Background and hypothesis: Psychosis-associated diagnostic codes are increasingly being utilized as case definitions for electronic health record (EHR)-based algorithms to predict and detect psychosis. However, data on the validity of psychosis-related diagnostic codes is limited. We evaluated the positive predictive value (PPV) of International Classification of Diseases (ICD) codes for psychosis.
Study design: Using EHRs at 3 health systems, ICD codes comprising primary psychotic disorders and mood disorders with psychosis were grouped into 5 higher-order groups. 1133 records were sampled for chart review using the full EHR. PPVs (the probability of chart-confirmed psychosis given ICD psychosis codes) were calculated across multiple treatment settings.
Study results: PPVs across all diagnostic groups and hospital systems exceeded 70%: Mass General Brigham 0.72 [95% CI 0.68-0.77], Boston Children's Hospital 0.80 [0.75-0.84], and Boston Medical Center 0.83 [0.79-0.86]. Schizoaffective disorder PPVs were consistently the highest across sites (0.80-0.92) and major depressive disorder with psychosis were the most variable (0.57-0.79). To determine if the first documented code captured first-episode psychosis (FEP), we excluded cases with prior chart evidence of a diagnosis of or treatment for a psychotic illness, yielding substantially lower PPVs (0.08-0.62).
Conclusions: We found that the first documented psychosis diagnostic code accurately captured true episodes of psychosis but was a poor index of FEP. These data have important implications for the case definitions used in the development of risk prediction models designed to predict or detect undiagnosed psychosis.
Keywords: bipolar; detection; prediction; schizoaffective; schizophrenia.
© The Author(s) 2024. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.