Lung immune cells such as lymphocytes and macrophages can induce an inflammatory response due to the activation of mineralocorticoid receptor (MR), which is manifested by the infiltration of inflammatory cells and the secretion of inflammatory cytokines and subsequent apoptosis, pyroptosis and necrosis of intrinsic lung cells and immune cells. Macrophages are immune cells that are abundant in the lung and act as the first line of defense against pathogens but are also aggravating factors of infection. The activation of the renin-angiotensin-aldosterone system (RAAS), especially aldosterone-stimulated MR activation, can induce macrophage and CD8+ T cell aggregation and the secretion of cytokines such as tumor necrosis factor-α (TNF-α) and interferon-gamma (IFN-γ). Increased IFN-γ secretion can induce macrophage pyroptosis and the release of interleukin 1-β (IL-1β), aggravating lung injury. In this study, lung injury in C57BL/6 mice was induced by subcutaneous micro-osmotic pump infusion of aldosterone. After 12 weeks of administration, the kidney, heart, blood vessels and lungs all showed obvious inflammatory injury, which manifested as rapid accumulation of macrophages. The overexpression of IFN-γ in the lungs of aldosterone-treated mice and the stimulation of MH-S and RAW264.7 alveolar macrophages (AMs) with aldosterone in vitro showed that IFN-γ induced pyroptosis of macrophages via the activation of the inflammasome, and the MR blocker esaxerenone effectively inhibited this effect and alleviated lung injury. In addition, IFN-γ secreted by CD8+ T cells is associated with macrophage pyroptosis. In conclusion, the inhibition of macrophage pyroptosis can effectively alleviate lung injury.
Keywords: aldosterone; interferon-gamma; lung injury; macrophage pyroptosis; mineralocorticoid receptor blocker.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.