This study investigated the physicochemical and flavor quality changes in fresh-cut papaya that was stored at 4 °C. Multivariate statistical analysis was used to evaluate the freshness of fresh-cut papaya. Aerobic plate counts were selected as a predictor of freshness of fresh-cut papaya, and a prediction model for freshness was established using partial least squares regression (PLSR), and support vector machine regression (SVMR) algorithms. Freshness of fresh-cut papaya could be well distinguished based on physicochemical and flavor quality analyses. The aerobic plate counts, as a predictor of freshness of fresh-cut papaya, significantly correlated with storage time. The SVMR model had a higher prediction accuracy than the PLSR model. Combining flavor quality with multivariate statistical analysis can be effectively used for evaluating the freshness of fresh-cut papaya.
Keywords: Electronic nose; Electronic tongue; Fresh-cut papaya; Freshness classification; Model regression; Predictive analysis.
© 2024 The Authors. Published by Elsevier Ltd.