Pulu Mandoti, a local red rice (Oryza sativa L.) variety popular among Sulawesi residents, has gained recognition for its perceived health benefits, especially as a preferred dietary option for individuals with diabetes or those seeking to prevent obesity. Given the increasing consumption of mushrooms, particularly Pleurotus species, renowned for their nutritional and medicinal attributes, this study delves into the transformative effects of Pleurotus spp. fermentation on Pulu Mandoti, the indigenous rice variety. Proximate analysis disclosed elevated dry matter (91.99 ± 0.61%), crude protein (8.55 ± 0.15%), and crude fat (1.34 ± 0.05%) in Pleurotus cystidiosus fermentation compared to Pleurotus ostreatus and Pleurotus djamor. Concurrently, antioxidant and antidiabetic activities were notably improved in all Pleurotus fermentations. Pulu Mandoti fermented with P. cystidiosus outperformed other treatments, aligning with molecular docking results pinpointing 11-Eicosenoic acid, methyl ester, and butylated hydroxytoluene as optimal interactors with antioxidant receptors 5O0x and 2CKJ. Butylated hydroxytoluene demonstrated interactions with the antidiabetic receptor 2QV4, along with 9-Octadecenoic acid, methyl ester. These compounds, previously unreported in Pleurotus, displayed promising attributes as antioxidants and antidiabetic agents. Furthermore, the investigation delved into the fatty acid profiles, emphasizing the diverse range of potential bioactive compounds in fermented Pulu Mandoti. The findings of this research present a potential functional food rich in natural antioxidants and antidiabetic compounds, highlighting the yet undiscovered capabilities of Pleurotus spp. fermentation in augmenting the nutritional composition and bioactivity of indigenous rice varieties, specifically Pulu Mandoti.
Keywords: In silico; Antidiabetic; Antioxidant; Fatty acids; Oyster mushrooms.
© 2024. The Author(s), under exclusive licence to Springer Nature B.V.