Scalable Optical Nose Realized with a Chemiresistively Modulated Light-Emitter Array

Adv Mater. 2024 Jul;36(29):e2402287. doi: 10.1002/adma.202402287. Epub 2024 May 16.

Abstract

Biological olfaction relies on a large number of receptors that function as sensors to detect gaseous molecules. It is challenging to realize artificial olfactory systems that contain similarly large numbers of sensory materials. It is shown that combinatorial materials processing with vapor deposition can be used to fabricate large arrays of distinct chemiresistive sensing materials. By combining these with light-emitting diodes, an array of chemiresistively-modulated light-emitting diodes, or ChemLEDs, that permit a simultaneous optical read-out in response to an analyte is obtained. The optical nose uses a common voltage source and ground for all sensing elements and thus eliminates the need for complex wiring of individual sensors. This optical nose contains one hundred ChemLEDs and generates unique light patterns in response to gases and their mixtures. Optical pattern recognition methods enable the quantitative prediction of the corresponding concentrations and compositions, thereby paving the way for massively parallel artificial olfactory systems. ChemLEDs open the possibility to explore demanding gas sensing applications, including in environmental, food quality monitoring, and potentially diagnostic settings.

Keywords: LED array; artificial olfaction; optical nose; optical readout large array; parallel readout; sensor arrays.