The Salt Lake City Mosquito Abatement District (SLCMAD) detected a 20,000-fold resistance to Lysinibacillus sphaericus (Lsph) in Culex pipiens occurring in catch basins of Salt Lake City during 2016. In response, SLCMAD suspended use of Lsph and rotated use of spinosyn and s-methoprene products for the next three years. At the end of the third year, Lsph was evaluated again and efficacy similar to susceptible colony strains. During the second year of Lsph use, technicians observed lack of control of larvae at some urban sites. Bioassays performed during 2021 showed recurrence of some resistance to Lsph to varying degrees across SLCMAD urban areas. The rapidity with which resistant phenotypes reemerged clarifies that SLCMAD cannot in the near future rely on repeated use of Lsph, even after suspending use for three years and using within-season product rotations. Prior reports in other research groups have found long-term selection to Lsph, as is the case at SLCMAD, to not regress in spite of halting use of the products. However, our findings offer some optimism that regression may be relatively quick. More operational review is needed, and future work should characterize resistance alleles in field populations. Collectively, there is a lack of concrete data supporting the prevailing assumptions from adjacent industries that were adopted into mosquito abatement. We provide this short note as additional guidance for mosquito and vector control districts weighing options to remediate Lsph resistance.
Keywords: Catch basin; insecticide resistance monitoring; larvicide; susceptibility; urban.
Copyright © 2024 by The American Mosquito Control Association, Inc.